[article]
Titre : |
L'infini |
Type de document : |
texte imprimé |
Editeur : |
Archimède, 2013 |
Article : |
p.29-45 |
Note générale : |
Bibliographie. |
in Tangente (Paris) > 155 (11/2013)
Descripteurs : |
ensemble : mathématique / infini / théorie des ensembles
|
Résumé : |
Dossier consacré à l'infini. Les paradoxes à propos de l'infini, de Zénon d'Elée à David Hilbert ; la théorie des ensembles avec Georg Cantor. L'hôtel de Hilbert. Les deux approches de l'infini : l'infini actuel et l'infini potentiel. Ensembles infinis dénombrables ; ensembles infinis non dénombrables comme l'ensemble triadique de Cantor (méthode de la diagonale de Cantor). Bijection et injection en théorie des ensembles. Intervention de l'infiniment grand dans l'étude du comportement d'une fonction : étude locale et étude asymptotique. Ensemble des nombres hyperréels dans l'analyse non standard. La géométrie projective : le plan projectif. Question de l'appellation de très grands nombres, entre échelle longue et échelle courte ; le nombre de Graham. |
Nature du document : |
documentaire |
Genre : |
Article de périodique |
[article]
|
L'infini
In Tangente (Paris), 155 (11/2013), p.29-45
Dossier consacré à l'infini. Les paradoxes à propos de l'infini, de Zénon d'Elée à David Hilbert ; la théorie des ensembles avec Georg Cantor. L'hôtel de Hilbert. Les deux approches de l'infini : l'infini actuel et l'infini potentiel. Ensembles infinis dénombrables ; ensembles infinis non dénombrables comme l'ensemble triadique de Cantor (méthode de la diagonale de Cantor). Bijection et injection en théorie des ensembles. Intervention de l'infiniment grand dans l'étude du comportement d'une fonction : étude locale et étude asymptotique. Ensemble des nombres hyperréels dans l'analyse non standard. La géométrie projective : le plan projectif. Question de l'appellation de très grands nombres, entre échelle longue et échelle courte ; le nombre de Graham.
|
| |