[article]
Titre : |
Calculs astucieux de périmètres, d'aires et de volumes |
Type de document : |
texte imprimé |
Editeur : |
Archimède, 2013 |
Article : |
p.17-29 |
Note générale : |
Bibliographie, webographie. |
in Tangente (Paris) > 154 (09/2013)
Descripteurs : |
géométrie
|
Mots-clés : |
Archimède : 0287-0212 AV-JC Euclide : 3e siècle AV-JC |
Résumé : |
Dossier consacré aux astuces de calcul pour le calcul des aires, volumes et périmètres, sans utiliser le calcul intégral. Les méthodes utilisées par les géomètres grecs Archimède et Euclide pour mesurer une aire. Le cas des pavages. Exemple d'intégrations de surface et volumes courbes dues à Archimède ; le théorème de Holditch ; le principe d'Estève. Le théorème de Clairaut en géométrie ; portrait d'Alexis Claude Clairaut par Denis Diderot. La méthode de mathématicien Mamikon Mnatsakanian pour déterminer la tangente à une parabole, l'aire d'une couronne ou encore l'aire d'une arche de cycloïde. |
Nature du document : |
documentaire |
Genre : |
Article de périodique |
[article]
|
Calculs astucieux de périmètres, d'aires et de volumes
In Tangente (Paris), 154 (09/2013), p.17-29
Dossier consacré aux astuces de calcul pour le calcul des aires, volumes et périmètres, sans utiliser le calcul intégral. Les méthodes utilisées par les géomètres grecs Archimède et Euclide pour mesurer une aire. Le cas des pavages. Exemple d'intégrations de surface et volumes courbes dues à Archimède ; le théorème de Holditch ; le principe d'Estève. Le théorème de Clairaut en géométrie ; portrait d'Alexis Claude Clairaut par Denis Diderot. La méthode de mathématicien Mamikon Mnatsakanian pour déterminer la tangente à une parabole, l'aire d'une couronne ou encore l'aire d'une arche de cycloïde.
|
| |